
EOS: An Introduction	 v.0.3 DRAFT PAGE 1

EOS: An Introduction
Ian Grigg

EOS: An Introduction	 v.0.3 DRAFT PAGE 1

ABSTRACT:

Current technologies for blockchain fall short of providing what developers and end-users need in order to contract
together and to build large scale businesses. We propose EOS, a performance-based and self-governing blockchain
that provides an operating system for building large-scale consumer- facing distributed applications.

This paper outlines the context, vision and software architecture underlying EOS, which we are building to serve a
broad and diverse group of users with smart business.

Keywords—EOS, blockchain, smart contract.

I. INTRODUCTION

The notions of digital cash and smart contracting have been
known for a long time, yet only in recent times have strides
been taken with respect to implementation.

This paper introduces the EOS.IO software underlying EOS
as a new platform for general value and contracting. EOS is
presented against a backdrop of three existing champions
because (a) they represent a broad range of opinions as
to the Distributed Ledger Technologies (DLT) space, (b) are
large enough to matter, and (c) are familiar to the author.

Bitcoin (Nakamoto 2008) seemed to be the word on a
blockchain that promised the inspirations of both digital cash
and smart contracts. Although it captured the attention
of the cypherpunks, media and hodlers, it failed to make
a mark on business. Ethereum (Woods 2014) attempted
to fulfil the smart contract promise with an “unstoppable
world computer” while Bitshares (Larimer et al 2014) strove
to open up the market for tradeable assets. Hundreds of
alternative Bitcoin blockchains or altcoins strove to make
a small difference seem louder. Corda (Brown et al 2016)
backed away from blockchain entirely and explored party to
party workflow solutions.

We are tantalisingly close but no prize has yet been awarded
- by the end-users. It is timely to then take a fresh look
at what the demand is for, from their perspective, and lay
down the basis and a vision towards creating a practical
and performant blockchain trade infrastructure. First, we
summarise the Con- text of today’s market for DLTs. Then,
we look at a Vision of the end-user’s needs, and how to
meet them. Then, we review an Architecture to meet the
market demands.

Finally a quick Comparison with known systems and
Concluding remarks. For more technical details on the EOS.
IO software, readers are referred to “EOS.IO Technical White
Paper” (Larimer 2017).

Ian Grigg is a financial cryptographer and partner at
block.one. iang at block.one (see http://iang.org/).
This work is licensed under Creative Commons
Attribution 4.0 International License (CC BY).

CAVEATS:
•	 This paper is primarily about the EOS.IO software

that permits a community to stand up an EOS
blockchain. As the software is open source and
a community is free of any controls beyond their
own Constitution, this paper may be indicative
but cannot be authoritative on any particular EOS
blockchain that a community might wish to stand
up.

•	 I have endeavoured to make this paper as
independent as possible, but biases are ever-
present and are what make life special. For the
record, confidential information known to the
author has been excluded, and would likely change
some criticisms if included, for better or worse.

•	 This present version is a DRAFT for which I
solicit broad feedback! Nothing written herein
is especially fixed for the EOS.IO software, and
changes are to be expected.

II. CONTEXT

THE MARKET. The market is competitive for all products and
DLTs or blockchains are no exception. What are the market
offerings? Bitcoin might be seen as the chain of security,
yet a strong chain is only as valuable as the business it is
attached to. Perhaps recognising this, Ethereum touted the
worldwide unstoppable Turing computer, a goal that might
appeal to computer scientists but has seemed elusive to
other disciplines. R3 built Corda to serve the needs of the
financial institution, which is a large market but also an
expensive and exclusive one.

This section examines those prior systems from the
perspective of major architectural features or necessities,
which suggests benchmarks or assumed starting points that
industry looks to.

CONSENSUS. With blockchains, we come to consensus over
a block of transactions, such that no transaction conflicts
with any other, neither in this block nor prior blocks. Also

EOS: An Introduction	 v.0.3 DRAFT PAGE 2

known as the Two Generals Problem, (see figure 1.) there is
a rich history in bringing remote actors to agreement such
that “I know that what you see is what I see.”

Bitcoin established proof of work or the
Nakamoto signature as the way to bring
an open entry community together over
a shared or distributed ledger in which
all parties hold a complete copy. This
mechanism runs a lottery amongst
many miners to determine who mines
each block. Tickets in the lottery are competed for by a SHA2
puzzle, and as this requires energy to produce, the winner of
the lottery is rewarded with a fixed amount of Bitcoin. In effect,
anyone can be a General, and the one that wins the lottery
is the one that sets this moment’s plan of battle. Following
Generals can choose to accept that plan or block, or reject if
invalid.

The fully shared ledger and the cost of proof of work, running
at 4% for Bitcoin and 11% for Ethereum at the time of this
paper’s writing, have offended many. Permissioned ledgers
(Swanson 2015) were proposed to not only block those we
want to exclude from enjoying the benefits of our ledger, but
also to bring us back to the computer science roots of efficient
consensus - practical but centralised designs well known in
database science. Also proposed from time to time are proof of
stake, exotic cryptography and secure enclaves. Corda (Brown
et al 2016) established that consensus could be a user choice
at select points within a contract of transactions. By allowing
interchangeability of servers called notaries that can mediate
the consensus by any of the above means, Corda reduces the
network operating cost to a level comparable to today’s IT
infrastructure.

VALUE. Similarly, there are a wide variety of mechanisms to
establish a fungible value such as cash. Smartcard money in the
1980s - 1990s was typically implemented through persistent
internal data stores in each card that negotiated atomic dual-
card transactions. In the same time-frame, David Chaum’s
eCash (Chaum 1983) popularised the notion of a coin, being a
random number with a blinded signature that could be handed
from user to user. Triple entry (Grigg 2005) established that each
party could see the same receipt, each of which recorded a
person to person transaction. Balance is calculated as the sum
of receipts going in and out.

Bitcoin uses the UTXO or unspent transaction output concept,
a state-driven layout. Each transaction record spends a set
of previously unspent values, and creates new spendable
values into the future. In contrast, Ethereum’s virtual machine
provided a database mechanism such that a currency could be
constructed from a table, a significant improvement in flexibility,
but opening up a wide surface area for attacks.

These five distinct mechanisms suggest that the way to
account for value is not settled science.

STATE TRANSITION. Bitcoin’s block as a list of UTXOs,
above, lays a claim to state, being the nature of those coins,
that block, that chain, at that time. The duality of the UTXO

design derives from the need of the lightweight or
‘SPV’ client to prove its incoming coins in
a shared ledger: A receiving client with
only limited access need only trace each

single ‘coin’ from a block position back
to its origin in order to determine
that an incoming transaction is good.
The receiver does not need to prove

anything outside of the incoming coins, such as the sender’s
balance, in order to ensure complete control of the value.

This powerful statement that the blockchain is a graph of state
was adopted broadly within the distributed ledger field. Even
as Ethereum replaced the UTXO with its more powerful virtual
machine, it accepted that state was the point of consensus
over which all nodes need to reach. On arrival of a new hashed
block, each validating node calculates and agrees on the precise
exit state resulting from all contracts found in each new block.

CONTRACTS. Bitcoin added business logic to money by
attaching validation ‘scripts’ to its transactions to suggest a
limited form of contracting, which popularly became known as
smart contracts (Szabo 1994, 1997). Ethereum’s notion of the
unstoppable worldwide Turing computer provided more fully
powerful coding, messaging and data storage. Corda pared
back these designs to validate and agree over UTXO-like state
with command-driven changes, but also limit access to only
the direct parties for confidentiality. Both Ethereum and Corda
introduced more powerful high-level languages with which to
express contracts.

PERFORMANCE. Bitcoin has established a general limit of about
3 transactions per second (TPS), at which point transactions
can be severely delayed. Ethereum seems to be stretched at 15
TPS, and a recent congestion event was marked by a $2000
transaction fee to jump the queue. The limits on a blockchain’s
throughput are many: validating prior claimed blocks, processing
the new block, and mining. Corda avoids these limits for the
most part, as its consensus is via selectable, independent and
localised notaries, as there is no need for wider consensus than
the parties. Every system is encumbered by the physical limits
of network propagation times.

USE CASES. Notwithstanding the hype surrounding block-
chain, there is relatively little hard evidence of successful use
cases. Bitcoin establishes a single currency, but the explosion
of altcoins, the failure of colored coins, and the absence of any
smart contracts of interest suggest clear limits. Ethereum tried
to break those limits but to date success eludes, unless one
considers the somewhat circular use case of raising funds on
the promise of future use cases, as marked by steady traffic
in ERC-20 contracts. Perhaps surprisingly, the progenitors of
EOS number are two ‘interesting’ use cases that have reached
production and scale, being a distributed exchange (Bitshares)
and a social media site (Steem). The promise of smart contracts,
however, remains elusive.

Figure 1.
Two generals on either

side of a hill must
co-ordinate an attack on
the enemy on the top

EOS: An Introduction	 v.0.3 DRAFT PAGE 3

GOVERNANCE. To this author, the critical discovery of Bitcoin
is not that we can mediate with cryptography, or that the
design is stable with decentralisation and open entry, but that
it must preserve these characteristics to survive. Entry by all is
not only key to the consensus model of hash-mining over the
distributed ledger, it is also key to the survivability of the system.
Previous digital cash systems failed because there was a centre,
which was attacked in one way or another, showing a failure
in governance. As if to provide further abundant evidence,
centralised exchanges in the Bitcoin era are frequently attacked
with thefts, contract breaches, denials of service, bankruptcies,
seizures and enforced rule changes.

Then, the world divides generally into two: fully decentralised
open entry systems typified by blockchains, and the converse
typified by centralised and permissioned ledgers, with the space
between the two being uncertain. Bifurcation over open entry
raises the question of how the users govern, are governed, and
how governance for the benefit works - in both cases.

The general approach in open entry starts with caveat emptor,
which carefully sets a technical environment that is capable
of most of what is required, but with enforcement of rights
limited by what can be automated in code. Sometimes labelled
trustlessness, this regime draws a stark line between that which
is technical and strong as a chain, and that which is at the user’s

discretion and therefore more dangerous. As time goes on,
institutional approaches such as improvement proposals and
centres of power such as foundations or teams arise to deal
with some of the dangers to users, to a greater or lesser degree
and success (Gupta 2014). Caveat emptor is typical of Bitcoin
and Ethereum.

In contrast, in the permissioned network or walled garden
approach, only those permitted can enter and act. In this
scenario, parties open an account, are on-boarded by an agent
and can trade with a presumption of good behaviour. Implicitly
or explicitly, enforcement of good behaviour is typically seen as
out of scope at the technical level, although identity typically
plays an unclear part. The downside is that the wall around
the garden can be expensive to erect and maintain, and every
year the gatekeeper charges more. This approach is commonly
assumed within heavily regulated markets such as banks and
the like, and is used by Corda.
Neither of these world states are user friendly - users lose too
much money through caveat emptor, and systems that start
from ‘permission’ become systems that discriminate, either at
the competitive level or the societal level. Users are routinely
skeptical of either.

III. VISION

END-STATE GOALS. What is it that our user needs? In the abstract, she wants to:

•	 Know her friends, business partners, and customers.
•	 Communicate with them.
•	 Be able to contract with them:

	 in the small, make peer to peer agreements, and
	
	 in the large, build a sophisticated business to be 		
	 able to serve the market.

•	 Be able to retain and direct her value (pay bills, etc) as a
necessary component of business.
	
	 Then, all has to be done safely and securely.

•	 Be able to invest in a predictable business. This
is a complex issue, but appears to require three
components.

	 Know that the ecosystem is advancing, and not at 		
	 undue risk of failing.

	 Pay for development effort up front with reason- 		
	 able payback in the future.

	 Because she knows that things - contracts, assets, 	
	 transactions, intents - go wrong, she wants to be 		
	 able to fix her difficulties. Including, with her friends, 	
	 her business, and her assets, and quickly, cheaply 		
	 and without undue escalation.

One caveat of arrogance: we assume her wants and her
needs are synonymous. More precisely, we are making an
entrepreneurial judgement call over what we believe the
user needs, and she’ll want it when she learns about it.

THE BIG IDEA. It has become abundantly clear that for
one reason or another, the promise of universal peer to
peer contracting and money has been excluded to the
wider Internet. Bitcoin is too unsafe, and its smart contracts
opaque. Ethereum is too scary, too hard, too geeky. Corda
is ‘big corporate.’ Other systems have their weaknesses, all
of them are restricted to the elite coder, and everyone has a
different view.

What is needed is smart business for the everyday person.
An everyday distributed application needs to live in a global
blockchain that handles the open entry treasured by the
Bitcoin discovery, has enough performance to build big
business, is connected enough to bring people together and
is safe and secure enough that Wall Street’s Gordon Gecko
can trade alongside Africa’s Mama Biashara. Without drama,
without fear, without missing out.

THE TARGET. The vision before us is a single global
contracting blockchain that can scale up to handle a
long-tail of businesses negotiating contracts for mutual
advantage in a safe and secure environment.

EOS: An Introduction	 v.0.3 DRAFT PAGE 4

In more practical terms, while there is much of value on the
Internet, we focus on what is mediated by the web, and
leave aside mobile and applications for now. What does
a builder of a web application want? We assume that the
target user is the web entrepreneur, and therefore let’s work
backwards from that position.

PRINCIPAL FEATURES. Our design predicts a blockchain to
handle thousands of transactions per second for business
contracts that are captured in easy to use and easy to
secure languages. The major features include:

•	 High performance messaging using event sourcing
•	 Delegated Proof of Stake
•	 Contracts as negotiation and intent - messaging at its heart
•	 Usability from the user to contract writer to developer

to entrepreneur
•	 Governance for business and chain maintenance

The following section explores in more depth.

IV. THE ARCHITECTURE

THE PHILOSOPHY. In large part the practical approach of
the software underlying EOS is to extend the large-scale
high-performance blockchain experience in Bitshares
and Steem to support end-user business. Most of the
elements have been proven to a lesser or greater extent,
this architecture re-assembles them for a new purpose - to
build distributed applications.

This section describes some important architectural
differences that the software underlying EOS proposes
against prior practice. For more technical details, readers are
referred to the EOS.IO Technical White Paper (Larimer 2017).

THE MESSAGE IS THE MEDIUM. The EOS.IO software
design switches from the more popular consensus over
state to the less familiar consensus over events (Grigg, 2017-
1). This approach marries the event sourcing pattern (Fowler,
2005) to a blockchain made of events rather than state.

In computer science, a deterministic state machine is built
as a machine of code, state (memory), and events, both
in and out. Every time something happens which causes a
change, a practical machine saves intermediates to memory,
and on restarting it recovers itself by reading back those
intermediates. In building a practical state machine, we
have a choice between saving events or saving state, which
choice depends mostly on what we are trying to optimise.

In figure 2.,
are we to
save the red
messages
or the blue
state? A

machine saving state is more likely to be used in a context
where we focus on what state it is in now, for example
databases. A machine saving messages as intent is more
likely to be useful when asking how we got to the state we
are in now, for example protocols or legally significant logs
such as triple entry accounting (Grigg 2005). Restart is faster
with saved state, throughput is faster with saved messages.

Because users need performance, the design saves
messages. Restart of a messaging or event sourced
machine is similar to recovering from the beginning,
therefore incredibly slow, and optimising startup means
saving checkpoints - back to state again. But, and here is
a crucial outcome, in saving that state, an actor remains
bound by the saved messages, not the state, so we can
optimise heavily and even recalculate the checkpoints
if needed. Precisely how we optimise is too big a topic
for this introduction, but suffice to predict that the
combined techniques can in theory take blockchain from 3
transactions per second to 3 million.

CONSENSUS. For consensus over messages, the EOS.IO
architecture uses Delegated Proof of Stake (DPOS), a two-
tier governance structure proven in Steem and Bitshares
(Larimer 2014). In the first tier, block producers are elected
into a round of 21, each producer gets one block per round,
and is rewarded for the validation of incoming messages
and production of the block of messages. A block released
by one producer is validated by the next and the next and
so forth; if not validated, it is not built upon. Similar longest-
chain mechanics to Bitcoin are followed, and in short order,
the producers converge on a longest chain. A block that is
accepted by a quorum of producers is declared immutable,
and the chain of immutable blocks becomes in effect a
checkpoint.

Like proof of work, producers can censor (ignore) messages,
or they can front-run by introducing their own from their
superior knowledge of the future. To provide light-touch
governance over bad acts by producers, each round of
producers is continuously elected by
the community using proof of
stake (PoS). As this second tier
blockchain-mediated election
is over the producers and
not the blocks, the
so-called “nothing
at stake” weakness
does not apply.

State 1:
if COIN go to State 2

State 2:
if BUTTON deliver
DRINK & go to
State 1

State

1/2

figure 2.

figure 3. Delegation allows replacement of Generals after a bad campaign

EOS: An Introduction	 v.0.3 DRAFT PAGE 5

In effect, a set of Generals is chosen for a campaign,
and each get one turn. After the campaign, the civilian
community asserts its view to replace any bad Generals.

DPOS avoids the tax of mining, releasing that substantial
value back to stakeholders. Value from block rewards
would be initially captured entirely by the producers.
However, because they are elected by the community, they
are incentivised to share the rewards by a scheme that
producers agree on amongst themselves, and promote to
the community.

By constitution, the long term reward for producing blocks
can be limited to for example 5% per annum (Larimer
2017-2). By custom, we suggest that the bulk of the value
be returned to the community for the common good -
software improvements, dispute resolution, and the like can
be entertained. In the spirit of ‘eating our own dogfood,’
the design envisages that the community votes on a set
of open entry contracts that act like ‘foundations’ for the
benefit of the community. Known as Community Benefit
Contracts, the mechanism highlights the importance of
DPOS as enabling direct on-chain governance by the
community (below).

THE CONTRACT. The architecture comes closer to the
nature of contracting by treating contracts as a dynamic
expression of negotiation, commitment and events, rather
than the more static interpretation of ‘the four corners
of the page’ or the performing code within a machine.
We propose that messages are the natural element of
contracting, as they better capture all phases of successful
contracting: negotiation, intent, performance and breach of
obligations are all events better captured as messages than,
say, state.

A user writes a contract as a virtual construct of
interlocking handlers of messages. A user can convert
her account into a contracting agent by adding message
handlers and using her account’s inbuilt database-like
store to hold the internal position of her contracts. Several
message handlers working together can mediate a flow of
messages so as to perform a complete contract or legally
sound agreement through its life-cycle.

From the perspective of a contract, the arrival, acceptance
and processing of a message is a simpler abstraction
than state. Consider an order processing book as seen in
a market for exchange: the book accepts bids to buy and
offers to sell. When the time comes, it has to calculate a
price at which to cross, and then issue accepted orders to
both sides.

An order book in a messaging-based system is committing
to its set of incoming messages and outgoing set of
messages, which is a relatively tractable task. In contrast, in
a fully state based system, all traders have to negotiate the
acceptable state to all of many parties, including quantities
and prices, before submitting a final state to the blockchain.
This implies that traders would get to peek at the solution
before agreeing, opening the door to game-playing. In

practice, the only known way to solve this problem is with
agents and messaging. An active agent receives committed
messages, decides on the outcome, and sends out
messages committing to that outcome.

USABILITY. The direct user of a blockchain is the developer
who creates web apps for her end-users. To support an
end- user, the software must support the developer, first
and fore- most, and it must do so in ways that help the
developer to support her users. High impact support for the
developer includes (a) the tools, (b) the language, and (c) the
environment.

In the large, the EOS.IO developer will be supported by a
web-based toolkit that provides a fully-serviced framework
on which to build applications as distributed web-based
systems coordinating over the blockchain. Accounts,
naming, permissioning, recovery,
database storage, scheduling,
authentication and inter-app
asynchronous communication are
all built in. A goal of the architecture
is to provide a fully-provisioned
operating system for the builder
of apps, focussed to the web
because that’s where the
bulk of the users are.

LANGUAGE. Within our
context of industrial
scale distributed
applications, the language for writing contracts is high on
the impact list. Most every other architectural feature in
the EOS.IO software has solid foundation that is proven
in Bitshares and Steem, whereas the addition of smart
contracts stands out as uncharted territory.

It behoves us to analyse the language needs carefully. From
the point of view of selecting technology for automated or
smart contracting, the three stakeholders critical for success
are: the parties, the developers and the operators.

•	 The parties need a contract that is, first of all, an
actual contract. Parties also want the contract to be
negotiable, readable, clear, and unambiguous - they
need their human intent to be captured faithfully.
Preferably, contracts should also be supported by
options for dispute resolution and enforceability.

•	 The developer needs the language and wider system to
be easy to learn and write in, as well as expressive and
securable, goals that often ignore higher semantics or
contractual intent.

•	 Meanwhile the operators of the blockchain - producers
of blocks and full-node app businesses - need the
contract to be scaleable and provide a reasonable basis
for earning some revenue, interests that have little to do
with human intent or developer expressibility.

OPERATORS
performant

revenue base
deterministic
repeatable

PARTIES
contractual
negotiable
readable

clear
unambiguous

DEVELOPERS
easy to read, learn,

maintain
expressive
securable
messaging

ARE ALL
OF THESE
POSSIBLE?

figure 4. Tensions between stakeholders in a blockchain

EOS: An Introduction	 v.0.3 DRAFT PAGE 6

Taking the parties’ needs
first, this pushes us in
the direction of melding
plaintext legal prose tightly
with computer code,
glued with some
parameters to “drive the
deal” and reuse the prose
and code over many
contracts (Grigg 2015).
Many research efforts aim
to merge the two contract
views of code and prose together as either higher order
parameters or a legally expressive domain specific language
(Clack1 et al 2016 see my figure 5.) but none have as yet
found this holy grail. This is an open research area with
unsettled design choices (Clack2 et al 2016).

Along those lines, our first temptation was towards the
developer: a source-interpreted scripting language based
on Wren, and customised to manage the design of a
contractual message handler. Example code snippet (Larimer
2017-1):

apply:
// assuming all prior steps pass,
// perform the state transition
// that updates balances and/or
// creates a new account for receiver
	 var from 	 = Balance[message.from]
	 var to		 = Balance.find(action.to)
	 from.bal 	 = from.bal - action.amount
	 to.bal 		 = to.bal + action.amount

This hybrid of Wren is simple to learn, read, and reason
about, making it ideal for automated contracting. However,
it proved to be slow: a trial of trivial transactions capped out
at 1,000 TPS, which brings us into collision with the needs of
operators, our producers and application businesses.

As we are aiming for 100 times that level, the team
switched to WebAssembly (WASM) which is a new
intermediate language designed to do the job that Javascript
currently does within browsers. WASM’s first unoptimised
trial within the EOS framework delivered about 50,000 TPS
for a currency contract.

Yet, WASM switches the challenge from the operators to the
parties - there are now 3 tangible views over any contract:
legal prose, source code initially in C and intermediate code
in WASM.

Thus it is a reasonable question to ask - what or where is
the contract that the parties agreed to? I would like to face
that question head on. In the two decades or so that I have
seen contracts issued on the net, as Ricardian or otherwise,
and the hundreds of issues that have arisen from these
contracts, I have yet to see a dispute, or even a confusion
where what the contract said or meant was key to the
dispute. Even with The DAO, that ill-fated $150 million lesson
in how not to issue a contract, the proximate cause was (in)

security, and regardless of which side of the fence one fell
in identifying the contractual significance of the hack, the
response was to arbitrarily change whatever needed to be
changed to get the money back. There was no organised,
formal or even a vestige of an attempt to resolve the
dispute over interpretation of the facts, the meaning and
the rights. It is an open question what proportion of disputes
in court are over meanings and confusions, and what
percentage are simply power plays and bullying, but I am
not optimistic.

In the face of The DAO and other experiences, I suggest
that the rule of one contract (Grigg 2004) looks dogmatic
and overly constricting. Instead, at least for the unregulated
part of the DLT space, there is opportunity to free up the
components of the contract to achieve better performance,
even at the expense of a little misalignment. Meanwhile, we
should focus on governance, and making dispute resolution
available and comfortable to the parties.

As of the time of writing, the set of languages available to the
contract developer is a work in progress. Whether WASM or
Wren or another, we will still need to structure the language
for performance and usability. Each named message handler
will need to identify sections for each of static, read-only
and read-write code, each having different potentials for
optimisation. To eliminate re-entrant issues, outgoing
messages will be stacked until completion, or dropped
on failure. We intend to add a SQL-like table structure to
significantly ease adoption by those who are familiar with
databases. Crypto will be external and mostly invisible.

As with the entire space for DLT, the competition continues
internally. Wren is small and tight. WASM is only just out
of standardisation. WASM’s early tools target C and C++
which are popular but are more costly to write code in, in
comparison to high level late-generation languages such
as Wren. These challenges should not be insurmountable
in the longer run as the WASM project is intended to work
with most languages, and the bulk of the code in any DApp
is outside the handlers, in the websites. The ability to accept
many popular languages is enticing, an advantage available
to Corda’s JVM but not easily reachable by Bitcoin or
Ethereum without a holistic approach to the developer cycle.
In conclusion, there are dramatic compromises in the choice
of language and toolkits for the developer that go beyond
mere codability. We would like an easy to read and reason
scripting language that could speak in full contractual terms,
be securable and be scaleable. But at the current state of
the art, compromises have to be made.

PDF / Word
documents

Prose linked
to base type
parameters

Prose linked to
higher order
parameters

All contract business
logic as higher order

parameters

figure 5. EVOLUTION OF LEGAL PROSE AND PARAMETERS

Parameters may become more sophisticated in the future, evolving from just simple base type
parameters to aslo include more complex higher-order parameters. In the future, if the encoding
of business logic used in the parameters becomes acceptable to lawyers and admissible in court,
then it could potentially replace the corresponding legal prose (Clack1 et al 2016, their Figure 5)

computer
science lawcomputer

science

EOS: An Introduction	 v.0.3 DRAFT PAGE 7

GOVERNANCE. Let us now turn to the environment. It is
a reality that things go wrong with automated processing
of contracts, to the distress of all. It is our hope to reduce
both the frequency and the cost of those errors, but they
cannot be eliminated entirely, and our approach is to build in
remedial methods for when they do occur.

A blockchain based on EOS.IO software assumes that all who
use the blockchain are members under a short Constitution
(Larimer 2017-2) (Grigg 2017-3) and by agreeing to which, all
members form a Community subject to the Constitution.

The Constitution sets down some basic rules for the benefit
of the community. The Constitution empowers three arms
of governance: arbitration for resolving disputes, block
producers for choosing blocks, and referenda for community
voice. Arranged in an interlocking triangle of governance,
these three arms support and counterbalance each other.
Referenda are used by the community to vote in the
producers and arbitrators, as well as changes to code and
constitution. Arbitrators can deliver legally binding rulings to
resolve disputes, and also for extraordinary changes such

as hard forks. Block producers are at technical liberty to
censor bad transactions or introduce remedial ones - but
are mindful of community reaction. Ar- bitrators publish
rulings, which producers might enforce, or users might seek
external enforcement.
This counterbalanced arrangement ensures that no party or
group has total power. Even founders or developers have
only limited ability to affect the rights of the community

members. Hard forks and other upgrades have a defined
path, and individual disputes are channelled to a place
where we can resolve and get back to business. A further
benefit is that most of the above governance can be
handled transparently, that is by writing contract handlers to
accept and manage disputes, handle referenda and the like.

To make these institutions work, users have to agree
to the Constitution, which empowers the producers to
choose blocks, and reserves all disputes into the forum of
arbitration. As well, the Constitution creates the legal rights
expressed in the blockchain by stating that each member
receives those rights properly accounted for, and in return
each member supports the accounted rights of others.
This trade of your rights for the rights of others becomes
the cornerstone of the community, in that the community
is defined by both the usage of the platform and the
agreement to the Constitution.

And thus we have preserved open entry even as the
Community governs itself internally. Even as a user
transacts, all transactions from the first entry to the latest
refer to the Constitution by hash, as a Ricardian Contract
(Grigg 2004). As an explicit governance mechanism, the
constitution creates more of a fenced field than a walled
garden, and the gatekeeper is automated as a transaction or
signpost at all points.

MEMBERS CONSTITUTION

COMMUNITY

figure 6. Members forge a Community with a Constitution

REFERENDA PRODUCERS

ARBITRATION

figure 7. Community can appoint governors to manage responsibilities

EOS: An Introduction	 v.0.3 DRAFT PAGE 8

V.	 COMPARISONS

BITCOIN. As the platform that launched the first and most
successful cryptocurrency, Bitcoin is a baseline. Yet, as the
‘first’ its flaws shine as bright as its success: The UTXO
verification model means that complex smart business
has to be mediated through external code. The state is
nicely locked on chain, but the hard work of negotiation
is done by the applications. It has no good framework for
assets, especially as each transaction includes BTC, and is
thus an affront to Gresham’s apocryphal warning against
commingling of assets, good money drives out bad. Its lack
of a thoughtful governance layer results that upgrades are
very difficult, and the community is at war with itself. For
example, the artificial limit of 3 TPS that kills its scalability is
because of the absence of governance.

ETHEREUM. To rectify Bitcoin’s weaknesses, Ethereum
establishes a Turing-complete virtual machine capability
on a world-wide computer. It has several major shortfalls.
Firstly, it has a dramatically restricting requirement to find
consensus on state over thousands of program executions,
leading to resource congestion at around 15 TPS. Secondly,
the decision to go-it- alone on languages, VMs, toolkits
and the like has caused a drag on developer capabilities.
Thirdly, it suffers from the ad-hocracy of the Foundation
that has emerged despite the refusal of major stakeholders
to recognise the need for governance. As an emergent
business proposition, use of Ethereum has been dominated
by raising funds for projects mostly aimed at finishing
Ethereum as a platform, or competing with it. Few novel use
cases have made their mark, suggesting that there is more
work to do before the Ethereum concept of smart contracts
bears fruit.

CORDA. The primary distinguishing factor of Corda is that
it is not a blockchain but a framework for party to party
workflow. Instead of posting contracts and actions to a
block-chain, parties exchange messages and come to
consensus via notaries. It achieves confidentiality for parties,
high performance unconstrained by chain coordination,
and the ability for parties to control the contracts as they
succeed and fail. Yet workflow works best with small
numbers of parties, not large, and hence it is weaker on
issuance of assets, especially cash and cash-denominated
trading. Another weakness is that Corda’s walled garden
approach for regulatory business stops it being an attractive
mass market for small players.

EOS: An Introduction	 v.0.3 DRAFT PAGE 9

VI.	 CONCLUSION

USER EXPERIENCE. The direct users of a blockchain such
as EOS are the entrepreneurs and developers who write
contracts to implement distributed applications or DApps.
Their users are the routine customers in retail, finance,
logistics, media. Those latter customers do not need to know
what a blockchain is. Hence the goal is to give the developers
a platform that allows extensive business logic to be built,
but the mechanisms of communication are hidden.

The DApp developer is given a fully capable accounts,
permissioning and messaging platform in which to express
the system. The user interface matches what users are
familiar with - a webkit for building websites and of course
access to the blockchain. This approach is expressed as “an
operating system for blockchain.”

The fact that there is a blockchain can be hidden from the
user, as exemplified by Steem, being just another blogging
platform that happens to be distributed on a blockchain.

USE CASES. An EOS blockchain is intended for high-
performance messaging with business logic. Popular use
cases will include supply chain, resource management, user-
messaging such as social media, asset issuance and trading,
accounting for remittances, and gaming.

A typical use case might be Uber. Ride-sharing is based on
setting standards of behaviour for the driver and for the
passenger. If drivers and passengers were part of the same
community, there would be an immediate benefit - the base
of liability and standards of behaviour would be covered
under community constitution and dispute resolution, and
their contracts could be bilateral rather than intermediated,
thus minimising any regulatory difficulties.

Then, as the contracts can be bilateral, the business flow
could be split up: tracking passengers in the market, tracking
cars available, finding a match, negotiating a contract,
perfor- mance, settlement, pricing, and social tracking could
all be built as separate DApps that interact.

COMMUNITY. To support business, we need to solve
problems. And to scale the solving of problems, it has to be
done by the community itself, which means it has to be in
the architecture. To advance community, we must preserve
open entry, but on entry provide the tools that users find
useful for governance. Users want to determine their risks
and obligations to their counterparties.

When bound together as a community under a Constitution,
users will know that the rights, liabilities and obligations
of their counterparties are at least to a basic standard, as
expressed in a constitution and as enforced in dispute
resolution. In addition reliable names and a web of trust can
reduce the anonymity of the Internet and give people a
sense of belonging to something important.

figure 8. The point is Smart Business

MEMBERS
CONSTITUTION

COMMUNITY

REFERENDA PRODUCERS

ARBITRATION

SMART
BUSINESS

EOS: An Introduction	 v.0.3 DRAFT PAGE 10

ACKNOWLEDGMENT

This paper received useful feedback from Brendan Blumer,
Arthur Doohan, Dan Larimer, Wendy Lee, Aaron Leibling,
Konstantinos Sgantzos, Joseph VaughnPerling, Kokuei Yuan.

REFERENCES

[1]	 Richard Brown, James Carlyle, Ian Grigg, Mike Hearn,
“Corda: an Introduction” 2016
[2]	 David Chaum, “Blind Signatures for Untraceable
Payments”, 1982 UC Santa Barbara http://blog.koehntopp.de/
uploads/Chaum.BlindSigForPayment.1982.PDF
[3]	 Christopher D. Clack (1), Vikram A. Bakshi, Lee Braine
“Smart Contract Templates: foundations, design landscape
and research directions”, 2016
[4]	 Christopher D. Clack (2), Vikram A. Bakshi, Lee
Braine “Smart Contract Templates: essential requirements
and design options”, 2016
[5]	 Martin Fowler, “Event Sourcing”, 2005 https://
martinfowler.com/eaaDev/EventSourcing.html
[6]	 Ian Grigg, “The Ricardian Contract,” 2004
[7]	 Ian Grigg, “Triple Entry Accounting,” 2005
[8]	 Ian Grigg, “The Sum of All Chains - Let’s Converge,”
2015
[9]	 Ian Grigg, blog post “The Message is the Medium,”
2017-1
[10]	 Ian Grigg, blog post “Seeking Consensus on
Consensus,” 2017-2
[11]	 Ian Grigg, blog post “A Principled Approach to
Blockchain Governance” 2017-3
[12]	 Vinay Gupta, interview “Bitcoin Cannot be divorced
from pre-existing political theory,” 2014
[13]	 Daniel Larimer, “Delegated Proof-of-Stake (DPOS)”
2014.
[14]	 Daniel Larimer, Charles Hoskinson, Stan Larimer, “A
Peer-to-Peer Polymorphic Digital Asset Exchange” 2014.
[15]	 Dan Larimer, “EOS.IO Technical White Paper” block.
one 2017 https://github.com/EOSIO/Documentation/blob/
master/TechnicalWhitePaper.md
[16]	 Dan Larimer, block post “Implementing a
Hypothetical Currency Application on EOS,” 2017-1 https://
steemit.com/eos/@eosio/implementing-a-hypothetical-
currency- application-on-eos
[17]	 Dan Larimer, blog post “What could a blockchain
Constitution look like?” 2017-2
[18]	 Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer
Electronic Cash System ” 2008
[19]	 Tim Swanson, “Consensus-as-a-Service” 2015
http://www.ofnumbers.com/wp-content/uploads/2015/04/
Permissioned- distributed-ledgers.pdf
[20]	 Nick Szabo, “Smart Contracts”, 1994
[21]	 Nick Szabo, “Formalizing and Securing Relationships
on Public Networks”, 1997
[22]	 Gavin Woods, “Ethereum: A Secure Decentralised
Generalised Transaction Ledger”, 2014

EOS: An Introduction
Ian Grigg

