
1

EOS - An Introduction
Ian Grigg

Abstract—Current technologies for blockchain fall short of
providing what developers and end-users need in order to
contract together and to build large scale businesses. We propose
EOS, a performance-based and self-governing blockchain that
provides an operating system for building large-scale consumer-
facing distributed applications. This paper outlines the context,
vision and software architecture underlying EOS, which we are
building to serve a broad and diverse group of users with smart
business.

Keywords—EOS, blockchain, smart contract.

I. INTRODUCTION

The notions of digital cash and smart contracting have been
known for a long time, yet only in recent times have strides
been taken with respect to implementation.

This paper introduces the EOS.IO software underlying EOS
as a new platform for general value and contracting. EOS
is presented against a backdrop of three existing champions
because (a) they represent a broad range of opinions as to the
Distributed Ledger Technologies (DLT) space, (b) are large
enough to matter, and (c) are familiar to the author.

Bitcoin (Nakamoto 2008) seemed to be the word on a
blockchain that promised the inspirations of both digital cash
and smart contracts. Although it captured the attention of the
cypherpunks, media and hodlers, it failed to make a mark on
business. Ethereum (Woods 2014) attempted to fulfill the smart
contract promise with an “unstoppable world computer” while
Bitshares (Larimer et al 2014) strove to open up the market for
tradeable assets. Hundreds of alternative Bitcoin blockchains
or altcoins strove to make a small difference seem louder.
Corda (Brown et al 2016) backed away from blockchain
entirely and explored party to party workflow solutions.

We are tantalisingly close but no prize has yet been awarded
- by the end-users. It is timely to then take a fresh look at what
the demand is for, from their perspective, and lay down the
basis and a vision towards creating a practical and performant

Ian Grigg is a financial cryptographer and partner at block.one. iang
at block.one (see http://iang.org/). This work is licensed under Creative
Commons Attribution 4.0 International License (CC BY). Caveats:

(i) This paper is primarily about the EOS.IO software that permits a
community to stand up an EOS blockchain. As the software is open source
and a community is free of any controls beyond their own Constitution, this
paper may be indicative but cannot be authoritative on any particular EOS
blockchain that a community might wish to stand up.

(ii) I have endeavoured to make this paper as independent as possible,
but biases are ever-present and are what make life special. For the record,
confidential information known to the author has been excluded, and would
likely change some criticisms if included, for better or worse.

(iii) This present version is a DRAFT for which I solicit broad feedback!
Nothing written herein is especially fixed for the EOS.IO software, and
changes are to be expected.

blockchain trade infrastructure. First, we summarise the Con-
text of today’s market for DLTs. Then, we look at a Vision of
the end-user’s needs, and how to meet them. Then, we review
an Architecture to meet the market demands.

Finally a quick Comparison with known systems and Con-
cluding remarks. For more technical details on the EOS.IO
software, readers are referred to “EOS.IO Technical White
Paper” (Larimer 2017).

II. CONTEXT

The Market. The market is competitive for all products and
DLTs or blockchains are no exception. What are the market
offerings? Bitcoin might be seen as the chain of security, yet
a strong chain is only as valuable as the business it is attached
to. Perhaps recognising this, Ethereum touted the worldwide
unstoppable Turing computer, a goal that might appeal to
computer scientists but has seemed elusive to other disciplines.
R3 built Corda to serve the needs of the financial institution,
which is a large market but also an expensive and exclusive
one.

This section examines those prior systems from the per-
spective of major architectural features or necessities, which
suggests benchmarks or assumed starting points that industry
looks to.

Consensus. With blockchains, we come to consensus over
a block of transactions, such that no transaction conflicts with
any other, neither in this block nor prior blocks. Also known as
the Two Generals Problem, there is a rich history in bringing
remote actors to agreement such that “I know that what you
see is what I see.” See Figure 1.

Bitcoin established proof of work or the Nakamoto signature
as the way to bring an open entry community together over a
shared or distributed ledger in which all parties hold a complete
copy. This mechanism runs a lottery amongst many miners to
determine who mines each block. Tickets in the lottery are
competed for by a SHA2 puzzle, and as this requires energy
to produce, the winner of the lottery is rewarded with a fixed
amount of Bitcoin. In effect, anyone can be a General, and
the one that wins the lottery is the one that sets this moment’s
plan of battle. Following Generals can choose to accept that
plan or block, or reject if invalid.

The fully shared ledger and the cost of proof of work,
running at 4% for Bitcoin and 11% for Ethereum at the time of
this paper’s writing, have offended many. Permissioned ledgers
(Swanson 2015) were proposed to not only block those we
want to exclude from enjoying the benefits of our ledger, but
also to bring us back to the computer science roots of efficient
consensus - practical but centralised designs well known in
database science. Also proposed from time to time are proof of
stake, exotic cryptography and secure enclaves. Corda (Brown
et al 2016) established that consensus could be a user choice

EOS - An Introduction 05 July 2017 - v0.4 - DRAFT

Fig. 1. The ”Two Generals” Problem is fundamental in Computer Science

at select points within a contract of transactions. By allowing
interchangeability of servers called notaries that can mediate
the consensus by any of the above means, Corda reduces the
network operating cost to a level comparable to today’s IT
infrastructure.

Value. Similarly, there are a wide variety of mechanisms to
establish a fungible value such as cash. Smartcard money in the
1980s - 1990s was typically implemented through persistent
internal data stores in each card that negotiated atomic dual-
card transactions. In the same timeframe, David Chaum’s
eCash (Chaum 1983) popularised the notion of a coin, being a
random number with a blinded signature that could be handed
from user to user. Triple entry (Grigg 2005) established that
each party could see the same receipt, each of which recorded
a person to person transaction. Balance is calculated as the
sum of receipts going in and out.

Bitcoin uses the UTXO or unspent transaction output con-
cept, a state-driven layout. Each transaction record spends a
set of previously unspent values, and creates new spendable
values into the future. In contrast, Ethereum’s virtual machine
provided a database mechanism such that a currency could
be constructed from a table, a significant improvement in
flexibility, but opening up a wide surface area for attacks.

These five distinct mechanisms suggest that the way to
account for value is not settled science.

State Transition. Bitcoin’s block as a list of UTXOs, above,
lays a claim to state, being the nature of those coins, that
block, that chain, at that time. The duality of the UTXO design
derives from the need of the lightweight or ‘SPV’ client to
prove its incoming coins in a shared ledger: A receiving client
with only limited access need only trace each single ‘coin’
from a block position back to its origin in order to determine
that an incoming transaction is good. The receiver does not
need to prove anything outside of the incoming coins, such as
the sender’s balance, in order to ensure complete control of
the value.

This powerful statement that the blockchain is a graph
of state was adopted broadly within the distributed ledger
field. Even as Ethereum replaced the UTXO with its more
powerful virtual machine, it accepted that state was the point
of consensus over which all nodes need to reach. On arrival of
a new hashed block, each validating node calculates and agrees

on the precise exit state resulting from all contracts found in
each new block.

Contracts. Bitcoin added business logic to money by at-
taching validation ‘scripts’ to its transactions to suggest a
limited form of contracting, which popularly became known as
smart contracts (Szabo 1994, 1997). Ethereum’s notion of the
unstoppable worldwide Turing computer provided more fully
powerful coding, messaging and data storage. Corda pared
back these designs to validate and agree over UTXO-like state
with command-driven changes, but also limit access to only
the direct parties for confidentiality. Both Ethereum and Corda
introduced more powerful high-level languages with which to
express contracts.

Performance. Bitcoin has established a general limit of
about 3 transactions per second (TPS), at which point transac-
tions can be severely delayed. Ethereum seems to be stretched
at 15 TPS, and a recent congestion event was marked by a
$2000 transaction fee to jump the queue. The limits on a
blockchain’s throughput are many: validating prior claimed
blocks, processing the new block, and mining. Corda avoids
these limits for the most part, as its consensus is via selectable,
independent and localised notaries, as there is no need for
wider consensus than the parties. Every system is encumbered
by the physical limits of network propagation times.

Use Cases. Notwithstanding the hype surrounding block-
chain, there is relatively little hard evidence of successful use
cases. Bitcoin establishes a single currency, but the explosion
of altcoins, the failure of colored coins, and the absence of
any smart contracts of interest suggest clear limits. Ethereum
tried to break those limits but to date success eludes, unless
one considers the somewhat circular use case of raising funds
on the promise of future use cases, as marked by steady traffic
in ERC-20 contracts. Perhaps surprisingly, the progenitors
of EOS number are two ‘interesting’ use cases that have
reached production and scale, being a distributed exchange
(Bitshares) and a social media site (Steem). The promise of
smart contracts, however, remains elusive.

Governance. To this author, the critical discovery of Bitcoin
is not that we can mediate with cryptography, or that the
design is stable with decentralisation and open entry, but that
it must preserve these characteristics to survive. Entry by
all is not only key to the consensus model of hash-mining
over the distributed ledger, it is also key to the survivability
of the system. Previous digital cash systems failed because
there was a centre, which was attacked in one way or another,
showing a failure in governance. As if to provide further
abundant evidence, centralised exchanges in the Bitcoin era
are frequently attacked with thefts, contract breaches, denials
of service, bankruptcies, seizures and enforced rule changes.

Then, the world divides generally into two: fully decen-
tralised open entry systems typified by blockchains, and the
converse typified by centralised and permissioned ledgers, with
the space between the two being uncertain. Bifurcation over
open entry raises the question of how the users govern, are
governed, and how governance for the benefit works - in both
cases.

The general approach in open entry starts with caveat
emptor, which carefully sets a technical environment that is

Page 2

EOS - An Introduction 05 July 2017 - v0.4 - DRAFT

capable of most of what is required, but with enforcement of
rights limited by what can be automated in code. Sometimes
labelled trustlessness, this regime draws a stark line between
that which is technical and strong as a chain, and that which
is at the user’s discretion and therefore more dangerous. As
time goes on, institutional approaches such as improvement
proposals and centres of power such as foundations or teams
arise to deal with some of the dangers to users, to a greater
or lesser degree and success (Gupta 2014). Caveat emptor is
typical of Bitcoin and Ethereum.

In contrast, in the permissioned network or walled garden
approach, only those permitted can enter and act. In this
scenario, parties open an account, are onboarded by an agent
and can trade with a presumption of good behaviour. Implicitly
or explicitly, enforcement of good behaviour is typically seen
as out of scope at the technical level, although dentity typically
plays an unclear part. The downside is that the wall around
the garden can be expensive to erect and maintain, and every
year the gatekeeper charges more. This approach is commonly
assumed within heavily regulated markets such as banks and
the like, and is used by Corda.

Neither of these world states are user friendly - users lose
too much money through caveat emptor, and systems that start
from ‘permission’ become systems that discriminate, either at
the competitive level or the societal level. Users are routinely
skeptical of either.

III. VISION

End-state Goals. What is it that our user needs? In the
abstract, she wants to:

• Know her friends, business partners, and customers.
• Communicate with them.
• Be able to contract with them:

◦ in the small, make peer to peer agreements, and
◦ in the large, build a sophisticated business to be

able to serve the market.
• Be able to retain and direct her value (pay bills, etc) as

a necessary component of business.
◦ Then, all has to be done safely and securely.

• Be able to invest in a predictable business. This is a
complex issue, but appears to require three components.
◦ Know that the ecosystem is advancing, and not at

undue risk of failing.
◦ Pay for development effort up front with reason-

able payback in the future.
◦ Because she knows that things - contracts, assets,

transactions, intents - go wrong, she wants to be
able to fix her difficulties. Including, with her
friends, her business, and her assets, and quickly,
cheaply and without undue escalation.

One caveat of arrogance: we assume her wants and her
needs are synonymous. More precisely, we are making an
entrepreneurial judgement call over what we believe the user
needs, and she’ll want it when she learns about it.

The Big Idea. It has become abundantly clear that for
one reason or another, the promise of universal peer to peer

contracting and money has been excluded to the wider Internet.
Bitcoin is too unsafe, and its smart contracts opaque. Ethereum
is too scary, too hard, too geeky. Corda is ‘big corporate.’ Other
systems have their weaknesses, all of them are restricted to the
elite coder, and everyone has a different view.

What is needed is smart business for the everyday person.
An everyday distributed application needs to live in a global
blockchain that handles the open entry treasured by the Bitcoin
discovery, has enough performance to build big business, is
connected enough to bring people together and is safe and
secure enough that Wall Street’s Gordon Gecko can trade
alongside Africa’s Mama Biashara. Without drama, without
fear, without missing out.

The Target. The vision before us is a single global con-
tracting blockchain that can scale up to handle a long-tail of
businesses negotiating contracts for mutual advantage in a safe
and secure environment.

In more practical terms, while there is much of value on the
Internet, we focus on what is mediated by the web, and leave
aside mobile and applications for now. What does a builder
of a web application want? We assume that the target user is
the web entrepreneur, and therefore let’s work backwards from
that position.

Principal Features. Our design predicts a blockchain to
handle thousands of transactions per second for business
contracts that are captured in easy to use and easy to secure
languages. The major features include:
• High performance messaging using event sourcing
• Delegated Proof of Stake
• Contracts as negotiation and intent - messaging at its

heart
• Usability from the user to contract writer to developer

to entrepreneur
• Governance for business and chain maintenance
The following section explores in more depth.

IV. THE ARCHITECTURE

The Philosophy. In large part the practical approach of the
software underlying EOS is to extend the large-scale high-
performance blockchain experience in Bitshares and Steem
to support end-user business. Most of the elements have
been proven to a lesser or greater extent, this architecture
re-assembles them for a new purpose - to build distributed
applications.

This section describes some important architectural differ-
ences that the software underlying EOS proposes against prior
practice. For more technical details, readers are referred to the
EOS.IO Technical White Paper (Larimer 2017).

The Message is the Medium. The EOS.IO software design
switches from the more popular consensus over state to the
less familiar consensus over events (Grigg, 2017-1). This
approach marries the event sourcing pattern (Fowler, 2005)
to a blockchain made of events rather than state.

In computer science, a deterministic state machine is built
as a machine of code, state (memory), and events, both in and
out. Every time something happens which causes a change,
a practical machine saves intermediates to memory, and on

Page 3

EOS - An Introduction 05 July 2017 - v0.4 - DRAFT

Fig. 2. A Coke Machine expressed as a state machine

restarting it recovers itself by reading back those intermediates.
In building a practical state machine, we have a choice between
saving events or saving state, which choice depends mostly on
what we are trying to optimise.

In Figure 2, are we to save the red messages or the blue
state? A machine saving state is more likely to be used in a
context where we focus on what state it is in now, for example
databases. A machine saving messages as intent is more likely
to be useful when asking how we got to the state we are in
now, for example protocols or legally significant logs such
as triple entry accounting (Grigg 2005). Restart is faster with
saved state, throughput is faster with saved messages.

Because users need performance, the design saves messages.
Restart of a messaging or event sourced machine is similar
to recovering from the beginning, therefore incredibly slow,
and optimising startup means saving checkpoints - back to
state again. But, and here is a crucial outcome, in saving that
state, an actor remains bound by the saved messages, not the
state, so we can optimise heavily and even recalculate the
checkpoints if needed. Precisely how we optimise is too big
a topic for this introduction, but suffice to predict that the
combined techniques can in theory take blockchain from 3
transactions per second to 3 million.

Consensus. For consensus over messages, the EOS.IO
architecture uses Delegated Proof of Stake (DPOS), a two-tier
governance structure proven in Steem and Bitshares (Larimer
2014). In the first tier, block producers are elected into a round
of 21, each producer gets one block per round, and is rewarded
for the validation of incoming messages and production of
the block of messages. A block released by one producer is
validated by the next and the next and so forth; if not validated,
it is not built upon. Similar longest-chain mechanics to Bitcoin
are followed, and in short order, the producers converge on
a longest chain. A block that is accepted by a quorum of
producers is declared immutable, and the chain of immutable
blocks becomes in effect a checkpoint.

Like proof of work, producers can censor (ignore) messages,
or they can front-run by introducing their own from their
superior knowledge of the future. To provide light-touch gov-
ernance over bad acts by producers, each round of producers
is continuously elected by the community using proof of stake
(PoS). As this second tier blockchain-mediated election is over
the producers and not the blocks, the so-called “nothing at
stake” weakness does not apply.

In effect, a set of Generals is chosen for a campaign, and
each get one turn. After the campaign, the civilian community
asserts its view to replace any bad Generals.

Fig. 3. Delegation allows replacement of Generals after a bad campaign

DPOS avoids the tax of mining, releasing that substantial
value back to stakeholders. Value from block rewards would be
initially captured entirely by the producers. However, because
they are elected by the community, they are incentivised to
share the rewards by a scheme that producers agree on amongst
themselves, and promote to the community.

By constitution, the long term reward for producing blocks
can be limited to for example 5% per annum (Larimer 2017-2).
By custom, we suggest that the bulk of the value be returned to
the community for the common good - software improvements,
dispute resolution, and the like can be entertained. In the spirit
of ‘eating our own dogfood,’ the design envisages that the
community votes on a set of open entry contracts that act
like ‘foundations’ for the benefit of the community. Known as
Community Benefit Contracts, the mechanism highlights the
importance of DPOS as enabling direct on-chain governance
by the community (below).

The Contract. The architecture comes closer to the nature
of contracting by treating contracts as a dynamic expression
of negotiation, commitment and events, rather than the more
static interpretation of ‘the four corners of the page’ or the
performing code within a machine. We propose that messages
are the natural element of contracting, as they better capture
all phases of successful contracting: negotiation, intent, perfor-
mance and breach of obligations are all events better captured
as messages than, say, state.

A user writes a contract as a virtual construct of interlocking
handlers of messages. A user can convert her account into
a contracting agent by adding message handlers and using
her account’s inbuilt database-like store to hold the internal
position of her contracts. Several message handlers working
together can mediate a flow of messages so as to perform
a complete contract or legally sound agreement through its
lifecycle.

Page 4

EOS - An Introduction 05 July 2017 - v0.4 - DRAFT

Fig. 4. Tensions between stakeholders in a blockchain

From the perspective of a contract, the arrival, acceptance
and processing of a message is a simpler abstraction than state.
Consider an order processing book as seen in a market for
exchange: the book accepts bids to buy and offers to sell. When
the time comes, it has to calculate a price at which to cross,
and then issue accepted orders to both sides.

An order book in a messaging-based system is committing
to its set of incoming messages and outgoing set of messages,
which is a relatively tractable task. In contrast, in a fully state
based system, all traders have to negotiate the acceptable state
to all of many parties, including quantities and prices, before
submitting a final state to the blockchain. This implies that
traders would get to peek at the solution before agreeing,
opening the door to game-playing. In practice, the only known
way to solve this problem is with agents and messaging.
An active agent receives committed messages, decides on the
outcome, and sends out messages committing to that outcome.

Usability. The direct user of a blockchain is the developer
who creates web apps for her end-users. To support an end-
user, the software must support the developer, first and fore-
most, and it must do so in ways that help the developer to
support her users. High impact support for the the developer
includes (a) the tools, (b) the language, and (c) the environ-
ment.

In the large, the EOS.IO developer will be supported by a
web-based toolkit that provides a fully-serviced framework on
which to build applications as distributed web-based systems
coordinating over the blockchain. Accounts, naming, permis-
sioning, recovery, database storage, scheduling, authentication
and inter-app asynchronous communication are all built in.
A goal of the architecture is to provide a fully-provisioned
operating system for the builder of apps, focussed to the web
because that’s where the bulk of the users are.

Language. Within our context of industrial scale distributed
applications, the language for writing contracts is high on
the impact list. Most every other architectural feature in
the EOS.IO software has solid foundation that is proven in
Bitshares and Steem, whereas the addition of smart contracts
stands out as uncharted territory.

It behoves us to analyse the language needs carefully. From
the point of view of selecting technology for automated or
smart contracting, the three stakeholders critical for success
are: the parties, the developers and the operators.

Fig. 5. Concepts in code automation and prose contracts will evolve (Clack1’s
Figure 5)

• The parties need a contract that is, first of all, an
actual contract. Parties also want the contract to be
negotiable, readable, clear, and unambiguous - they need
their human intent to be captured faithfully. Preferably,
contracts should also be supported by options for dispute
resolution and enforceability.

• The developer needs the language and wider system to
be easy to learn and write in, as well as expressive and
securable, goals that often ignore higher semantics or
contractual intent.

• Meanwhile the operators of the blockchain - producers
of blocks and full-node app businesses - need the con-
tract to be scaleable and provide a reasonable basis for
earning some revenue, interests that have little to do with
human intent or developer expressibility.

Taking the parties’ needs first, this pushes us in the direction
of melding plaintext legal prose tightly with computer code,
glued with some parameters to “drive the deal” and reuse
the prose and code over many contracts (Grigg 2015). Many
research efforts aim to merge the two contract views of code
and prose together as either higher order parameters or a
legally expressive domain specific language (Clack1 et al 2016
see their Figure 5) but none have as yet found this holy grail.
This is an open research area with unsettled design choices
(Clack2 et al 2016).

Along those lines, our first temptation was towards the
developer: a source-interpreted scripting language based on
Wren, and customised to manage the design of a contractual
message handler. Example code snippet (Larimer 2017-1):

apply:
// assuming all prior steps pass,
// perform the state transition
// that updates balances and/or
// creates a new account for receiver
var from = Balance[message.from]
var to = Balance.find(action.to)
from.bal = from.bal - action.amount
to.bal = to.bal + action.amount

This hybrid of Wren is simple to learn, read, and reason
about, making it ideal for automated contracting. However, it
proved to be slow: a trial of trivial transactions capped out at
1,000 TPS, which brings us into collision with the needs of
operators, our producers and application businesses.

Page 5

EOS - An Introduction 05 July 2017 - v0.4 - DRAFT

Fig. 6. Members forge a Community with a Constitution

As we are aiming for 100 times that level, the team switched
to WebAssembly (WASM) which is a new intermediate lan-
guage designed to do the job that Javascript currently does
within browsers. WASM’s first unoptimised trial within the
EOS framework delivered about 50,000 TPS for a currency
contract.

Yet, WASM switches the challenge from the operators to
the parties - there are now 3 tangible views over any contract:
legal prose, source code initially in C and intermediate code
in WASM.

Thus it is a reasonable question to ask - what or where is
the contract that the parties agreed to? I would like to face that
question head on. In the two decades or so that I have seen
contracts issued on the net, as Ricardian or otherwise, and
the hundreds of issues that have arisen from these contracts,
I have yet to see a dispute, or even a confusion where what
the contract said or meant was key to the dispute. Even with
The DAO, that ill-fated $150 million lesson in how not to
issue a contract, the proximate cause was (in) security, and
regardless of which side of the fence one fell in identifying
the contractual significance of the hack, the response was to
arbitrarily change whatever needed to be changed to get the
money back. There was no organised, formal or even a vestige
of an attempt to resolve the dispute over interpretation of
the facts, the meaning and the rights. It is an open question
what proportion of disputes in court are over meanings and
confusions, and what percentage are simply power plays and
bullying, but I am not optimistic.

In the face of The DAO and other experiences, I suggest
that the rule of one contract (Grigg 2004) looks dogmatic
and overly constricting. Instead, at least for the unregulated
part of the DLT space, there is opportunity to free up the
components of the contract to achieve better performance, even
at the expense of a little misalignment. Meanwhile, we should
focus on governance, and making dispute resolution available
and comfortable to the parties.

As of the time of writing, the set of languages available
to the contract developer is a work in progress. Whether
WASM or Wren or another, we will still need to structure the
language for performance and usability. Each named message
handler will need to identify sections for each of static, read-

Fig. 7. Community can appoint governors to manage responsibilities

only and read-write code, each having different potentials for
optimisation. To eliminate re-entrant issues, outgoing messages
will be stacked until completion, or dropped on failure. We
intend to add a SQL-like table structure to significantly ease
adoption by those who are familiar with databases. Crypto will
be external and mostly invisible.

As with the entire space for DLT, the competition continues
internally. Wren is small and tight. WASM is only just out of
standardisation. WASM’s early tools target C and C++ which
are popular but are more costly to write code in, in comparison
to high level late-generation languages such as Wren. These
challenges should not be insurmountable in the longer run as
the WASM project is intended to work with most languages,
and the bulk of the code in any DApp is outside the handlers, in
the websites. The ability to accept many popular languages is
enticing, an advantage available to Corda’s JVM but not easily
reachable by Bitcoin or Ethereum without a holistic approach
to the developer cycle.

In conclusion, there are dramatic compromises in the choice
of language and toolkits for the developer that go beyond
mere codability. We would like an easy to read and reason
scripting language that could speak in full contractual terms,
be securable and be scaleable. But at the current state of the
art, compromises have to be made.

Governance. Let us now turn to the environment. It is a
reality that things go wrong with automated processing of
contracts, to the distress of all. It is our hope to reduce both
the frequency and the cost of those errors, but they cannot be
eliminated entirely, and our approach is to build in remedial
methods for when they do occur.

A blockchain based on EOS.IO software assumes that all
who use the blockchain are members under a short Constitution
(Larimer 2017-2) (Grigg 2017-3) and by agreeing to which,
all members form a Community subject to the Constitution.

The Constitution sets down some basic rules for the benefit
of the community. The Constitution empowers three arms of
governance: arbitration for resolving disputes, block producers
for choosing blocks, and referenda for community voice.
Arranged in an interlocking triangle of governance, these three
arms support and counterbalance each other. Referenda are
used by the community to vote in the producers and arbitrators,

Page 6

EOS - An Introduction 05 July 2017 - v0.4 - DRAFT

as well as changes to code and constitution. Arbitrators can
deliver legally binding rulings to resolve disputes, and also
for extraordinary changes such as hard forks. Block producers
are at technical liberty to censor bad transactions or introduce
remedial ones - but are mindful of community reaction. Ar-
bitrators publish rulings, which producers might enforce, or
users might seek external enforcement.

This counterbalanced arrangement ensures that no party
or group has total power. Even founders or developers have
only limited ability to affect the rights of the community
members. Hard forks and other upgrades have a defined path,
and individual disputes are channelled to a place where we can
resolve and get back to business. A further benefit is that most
of the above governance can be handled transparently, that is
by writing contract handlers to accept and manage disputes,
handle referenda and the like.

To make these institutions work, users have to agree to the
Constitution, which empowers the producers to choose blocks,
and reserves all disputes into the forum of arbitration. As
well, the Constitution creates the legal rights expressed in the
blockchain by stating that each member receives those rights
properly accounted for, and in return each member supports
the accounted rights of others. This trade of your rights for the
rights of others becomes the cornerstone of the community, in
that the community is defined by both the usage of the platform
and the agreement to the Constitution.

And thus we have preserved open entry even as the Com-
munity governs itself internally. Even as a user transacts,
all transactions from the first entry to the latest refer to the
Constitution by hash, as a Ricardian Contract (Grigg 2004).
As an explicit governance mechanism, the constitution creates
more of a fenced field than a walled garden, and the gatekeeper
is automated as a transaction or signpost at all points.

V. COMPARISONS

Bitcoin. As the platform that launched the first and most
successful cryptocurrency, Bitcoin is a baseline. Yet, as the
‘first’ its flaws shine as bright as its success: The UTXO
verification model means that complex smart business has
to be mediated through external code. The state is nicely
locked on chain, but the hard work of negotiation is done
by the applications. It has no good framework for assets,
especially as each transaction includes BTC, and is thus an
affront to Gresham’s apocryphal warning against commingling
of assets, good money drives out bad. Its lack of a thoughtful
governance layer results that upgrades are very difficult, and
the community is at war with itself. For example, the artificial
limit of 3 TPS that kills its scalability is because of the absence
of governance.

Ethereum. To rectify Bitcoin’s weaknesses, Ethereum es-
tablishes a Turing-complete virtual machine capability on a
world-wide computer. It has several major shortfalls. Firstly, it
has a dramatically restricting requirement to find consensus on
state over thousands of program executions, leading to resource
congestion at around 15 TPS. Secondly, the decision to go-it-
alone on languages, VMs, toolkits and the like has caused a
drag on developer capabilities. Thirdly, it suffers from the ad-
hocracy of the Foundation that has emerged despite the refusal

of major stakeholders to recognise the need for governance.
As an emergent business proposition, use of Ethereum has
been dominated by raising funds for projects mostly aimed at
finishing Ethereum as a platform, or competing with it. Few
novel use cases have made their mark, suggesting that there
is more work to do before the Ethereum concept of smart
contracts bears fruit.

Corda. The primary distinguishing factor of Corda is that
it is not a blockchain but a framework for party to party
workflow. Instead of posting contracts and actions to a block-
chain, parties exchange messages and come to consensus via
notaries. It achieves confidentiality for parties, high perfor-
mance unconstrained by chain coordination, and the ability
for parties to control the contracts as they succeed and fail.
Yet workflow works best with small numbers of parties, not
large, and hence it is weaker on issuance of assets, especially
cash and cash-denominated trading. Another weakness is that
Corda’s walled garden approach for regulatory business stops
it being an attractive mass market for small players.

VI. CONCLUSION

User experience. The direct users of a blockchain such as
EOS are the entrepreneurs and developers who write contracts
to implement distributed applications or DApps. Their users are
the routine customers in retail, finance, logistics, media. Those
latter customers do not need to know what a blockchain is.
Hence the goal is to give the developers a platform that allows
extensive business logic to be built, but the mechanisms of
communication are hidden.

The DApp developer is given a fully capable accounts,
permissioning and messaging platform in which to express the
system. The user interface matches what users are familiar
with - a webkit for building websites and of course access to
the blockchain. This approach is expressed as “an operating
system for blockchain.”

The fact that there is a blockchain can be hidden from the
user, as exemplified by Steem, being just another blogging
platform that happens to be distributed on a blockchain.

Use cases. An EOS blockchain is intended for high-
performance messaging with business logic. Popular use
cases will include supply chain, resource management, user-
messaging such as social media, asset issuance and trading,
accounting for remittances, and gaming.

A typical use case might be Uber. Ride-sharing is based
on setting standards of behaviour for the driver and for the
passenger. If drivers and passengers were part of the same
community, there would be an immediate benefit - the base
of liability and standards of behaviour would be covered
under community constitution and dispute resolution, and their
contracts could be bilateral rather than intermediated, thus
minimising any regulatory difficulties.

Then, as the contracts can be bilateral, the business flow
could be split up: tracking passengers in the market, tracking
cars available, finding a match, negotiating a contract, perfor-
mance, settlement, pricing, and social tracking could all be
built as separate DApps that interact.

Community. To support business, we need to solve prob-
lems. And to scale the solving of problems, it has to be done

Page 7

EOS - An Introduction 05 July 2017 - v0.4 - DRAFT

Fig. 8. The point is Smart Business

by the community itself, which means it has to be in the
architecture. To advance community, we must preserve open
entry, but on entry provide the tools that users find useful for
governance. Users want to determine their risks and obligations
to their counterparties.

When bound together as a community under a Constitution,
users will know that the rights, liabilities and obligations of
their counterparties are at least to a basic standard, as expressed
in a constitution and as enforced in dispute resolution. In
addition reliable names and a web of trust can reduce the
anonymity of the Internet and give people a sense of belonging
to something important.

ACKNOWLEDGMENT

This paper received useful feedback from Brendan Blumer,
Arthur Doohan, Dan Larimer, Wendy Lee, Aaron Leibling,
Konstantinos Sgantzos, Joseph VaughnPerling, Kokuei Yuan.

REFERENCES

[1] Richard Brown, James Carlyle, Ian Grigg, Mike Hearn, “Corda: an
Introduction” 2016

[2] David Chaum, “Blind Signatures for Untraceable Payments”, 1982 UC
Santa Barbara
http://blog.koehntopp.de/uploads/Chaum.BlindSigForPayment.1982.PDF

[3] Christopher D. Clack (1), Vikram A. Bakshi, Lee Braine “Smart
Contract Templates: foundations, design landscape and research
directions”, 2016

[4] Christopher D. Clack (2), Vikram A. Bakshi, Lee Braine “Smart
Contract Templates: essential requirements and design options”, 2016

[5] Martin Fowler, “Event Sourcing”, 2005
https://martinfowler.com/eaaDev/EventSourcing.html

[6] Ian Grigg, “The Ricardian Contract,” 2004
[7] Ian Grigg, “Triple Entry Accounting,” 2005
[8] Ian Grigg, “The Sum of All Chains - Let’s Converge,” 2015
[9] Ian Grigg, blog post “The Message is the Medium,” 2017-1
[10] Ian Grigg, blog post “Seeking Consensus on Consensus,” 2017-2
[11] Ian Grigg, blog post “A Principled Approach to Blockchain

Governance” 2017-3
[12] Vinay Gupta, interview “Bitcoin Cannot be divorced from pre-existing

political theory,” 2014
[13] Daniel Larimer, “Delegated Proof-of-Stake (DPOS)” 2014.
[14] Daniel Larimer, Charles Hoskinson, Stan Larimer, “A Peer-to-Peer

Polymorphic Digital Asset Exchange” 2014.
[15] Dan Larimer, “EOS.IO Technical White Paper” block.one 2017

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
[16] Dan Larimer, block post “Implementing a Hypothetical Currency

Application on EOS,” 2017-1
https://steemit.com/eos/@eosio/implementing-a-hypothetical-currency-
application-on-eos

[17] Dan Larimer, blog post “What could a blockchain Constitution look
like?” 2017-2

[18] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System ”
2008

[19] Tim Swanson, “Consensus-as-a-Service” 2015
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-
distributed-ledgers.pdf

[20] Nick Szabo, “Smart Contracts”, 1994
[21] Nick Szabo, “Formalizing and Securing Relationships on Public

Networks”, 1997
[22] Gavin Woods, “Ethereum: A Secure Decentralised Generalised

Transaction Ledger”, 2014

Page 8

